

13 March 2024

Decarbonizing Steel Overview

Mimi Khawsam-ang, Max de Boer, Grace Frascati & Gernot Wagner

Steel sector overview. The problem

The global steel sector is responsible for approximately 10% of global CO₂e emissions

- Global steel emissions have more than doubled since 2000 (from 1.2 gigatonnes in 2000 to 2.5 gigatonnes in 2021). However, emissions have started to decouple from production levels since 2016
- Without intervention, emissions are expected to continue growing due to rising demand from emerging economies. Reaching net zero by 2050 would require a 25% emission reduction by 2030

Steel is currently produced through three main production routes, all of which emit CO₂:

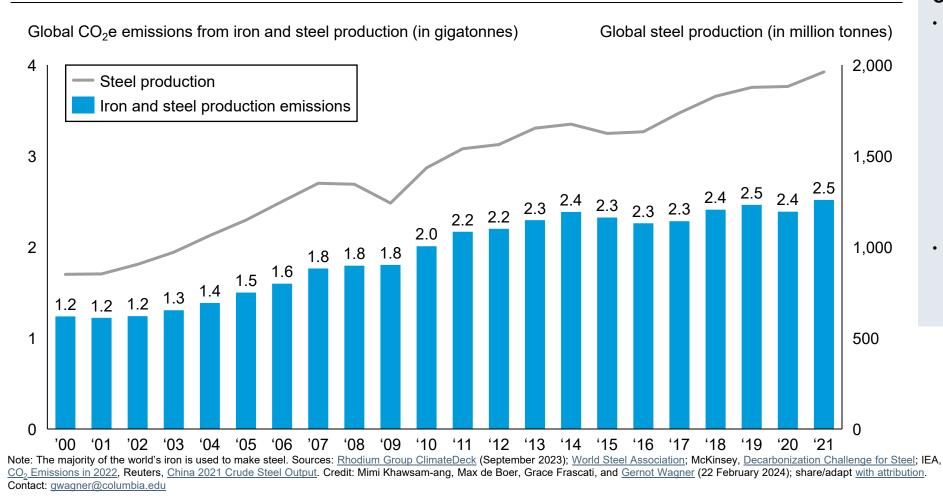
- Blast furnace-basic oxygen furnace (BF-BOF): 72% of global steel production. It uses coke and limestone to produce pure iron from iron ore in a blast furnace, which is then turned into steel in an oxygen furnace
- Scrap electric arc furnace (scrap EAF): 21% of global steel production. Scrap metal is melted in an EAF using electrical energy
- Natural gas-based direct reduced iron-electric arc furnace (NG DRI-EAF): 7% of global steel production. Iron ore is turned into iron using natural gas, which is then melted in an EAF to produce steel

On average, **BF-BOF is the cheapest production method** (\$390 per tonne vs. \$415 for scrap EAF and \$455 for NG DRI-EAF). However, **regional variations in costs** (such as for raw material and fuel) make all **three methods competitive**

Downstream activities after crude steelmaking (e.g., refining, casting, rolling) represent **less** than 20% of the total steel production emissions

Because steel is a **100% recyclable material**, increased use of **scrap metal** can help **decarbonize** the steel sector

Steel sector scope 1 and 2 emissions are ~10% of global emissions


Sources: Scope 1 emissions from Rhodium Group ClimateDeck (September 2023); Scope 2 iron and steel estimate from IEA (2023). Credit: Mimi Khawsam-ang, Max de Boer, Grace Frascati, and Gernot Wagner (22 February 2024); share/adapt with attribution. Contact: gwagner@columbia.edu

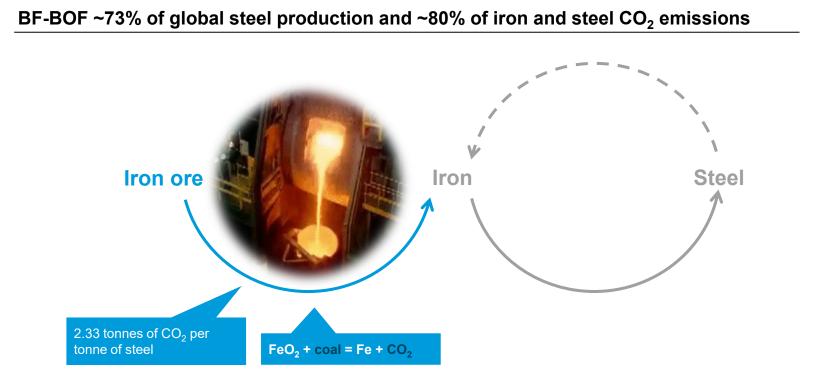
CO₂e emissions in 2021: 50.1 billion tonnes

Global steel emissions have more than doubled since 2000, with emission growth decoupled from production growth after 2016

Global CO₂e emissions decoupled from steel production post-2016

Observations

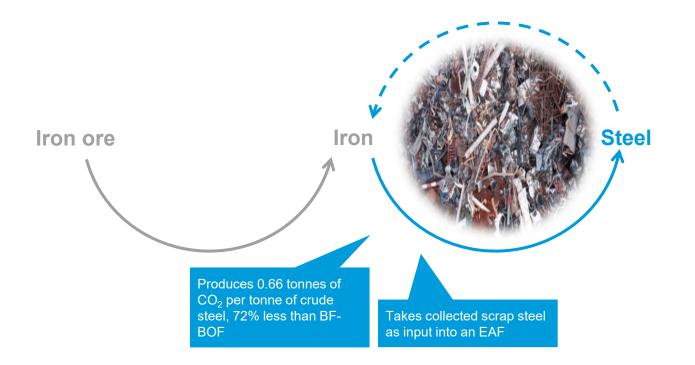
- In recent years, the steel industry has made efforts to reduce its carbon footprint with more energy-efficient processes and technologies
 - Though not enough by itself, recycling rates have improved (sitting around 80%-90% globally)
 - Better manufacturing yields have made supply chains more efficient
 - Enhanced control processes and predictive maintenance strategies have led improvements in operational efficiency
- China, the largest steel producer in the world, saw a 3% decline in steel output in 2021 and a similar decline in the years since



Crude steel is now produced through three main methods that all emit CO₂:

- Blast furnace-basic oxygen furnace (BF-BOF), which alone produces ~80% of iron & steel CO₂
- Scrap electric arc furnace (EAF), limited to recycled scrap
- 3 Natural gas-based direct reduced iron-electric arc furnace (NG DRI-EAF) most expensive, least used

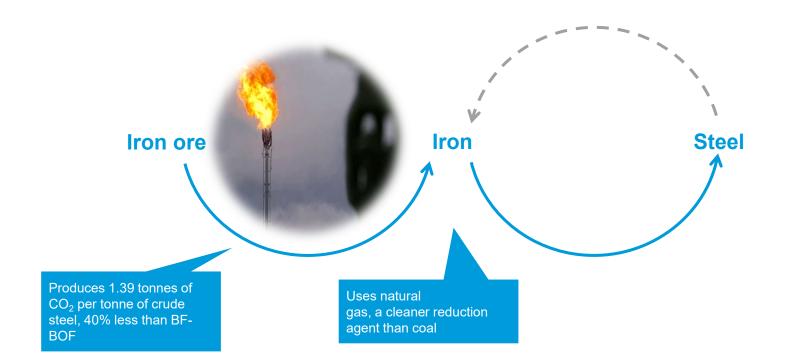
Of three main steelmaking methods, blast furnace-basic oxygen furnace (BF-BOF) is the cheapest, most popular, and most polluting


Observations

• **BF-BOF:** Iron ore, coke, and limestone produce iron in a blast furnace, which is turned into steel in an oxygen furnace

Of the three main steelmaking methods, scrap electric arc furnace (EAF) is the cleanest, though limited by the scarcity of scrap material

More than 80% of steel recycled; scrap EAF accounts for ~22% of global steel production


Observations

- **BF-BOF:** Iron ore, coke, and limestone produce iron in a blast furnace, which is turned into steel in an oxygen furnace
- Scrap EAF: Scrap metal is melted in an EAF using electrical energy

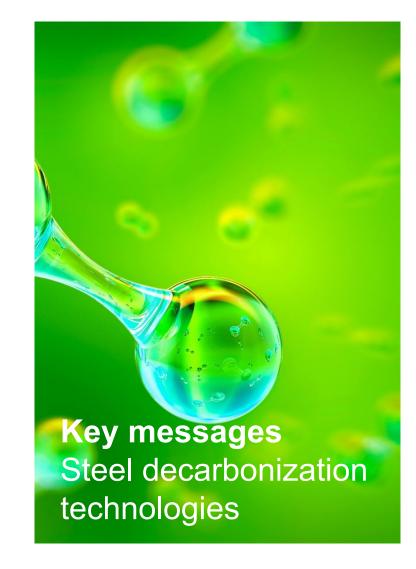
Of the three main steelmaking methods, natural gas-based direct reduced iron-electric arc furnace (NG DRI-EAF) is the most expensive and least used

BF-BOF ~73% of global steel production and 80% of iron and steel CO₂ emissions

Observations

- **BF-BOF:** Iron ore, coke, and limestone produce iron in a blast furnace, which is turned into steel in an oxygen furnace
- Scrap EAF: Scrap metal is melted in an EAF using electrical energy
- **NG DRI-EAF:** Iron ore turns into iron using natural gas, which is then melted in an EAF to produce steel

At present, crude steel is produced through three main methods that all emit CO₂: BF-BOF, scrap EAF, and NG DRI-EAF


	1	2	3
	Blast Furnace-Basic Oxygen Furnace (BF-BOF)	Scrap Electric Arc Furnace (Scrap EAF)	Natural Gas-Based Direct Reduced Iron – Electric Arc Furnace (NG DRI-EAF)
Description	Iron ore, coke, and limestone produce pure iron in a blast furnace, which is turned into steel in an oxygen furnace	Scrap metal is melted in an EAF using electrical energy	Iron ore is turned into iron using natural gas, which is then melted in an EAF to produce steel
Main inputs	Iron ore, cooking coal	Scrap steel, electricity	Iron ore, natural gas
% of global steel production	72%	21%	7%
CO2 per tonne of crude steel	2.3 tonnes	0.7 tonnes	1.4 tonnes
Energy intensity per ton of crude steel	~24 GJ	~10 GJ	~22 GJ
Average cost per tonne of crude steel	~\$390	~\$415	~\$455

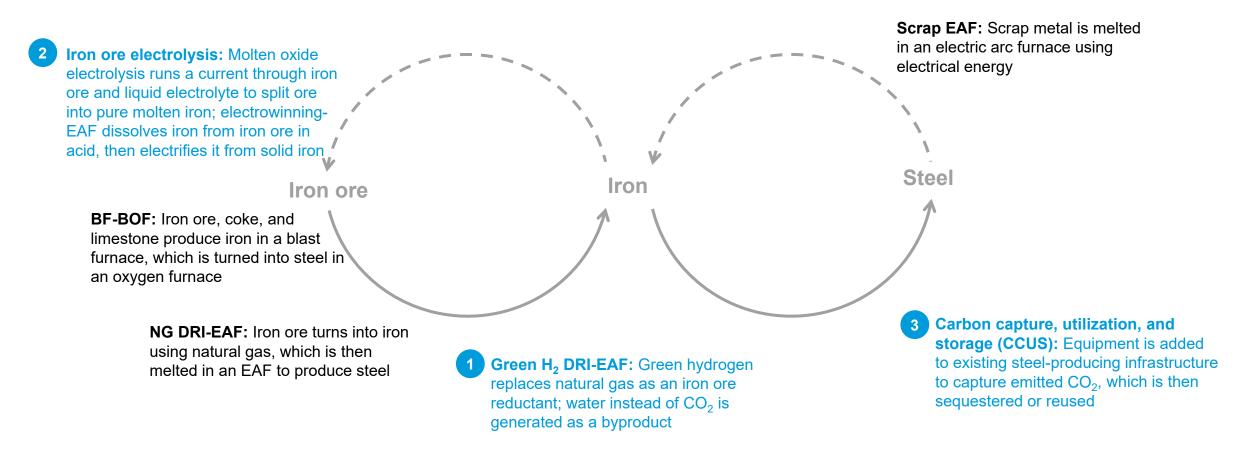
Sources: World Steel Association; IEEFA (2022); IEA, Iron and Steel Technology Roadmap (2020); Steel Technology, Basic Oxygen Furnace Steelmaking; Recycling Today, Growth of EAF Steelmaking; Wildsight, Do We Really Need Coal to Make Steel. Credit: Mimi Khawsam-ang, Max de Boer, Grace Frascati, and Gernot Wagner (22 February 2024); share/adapt with attribution. Contact: gwagner@columbia.edu

Steel Decarbonization Technologies

Several emerging deep decarbonization steelmaking technologies now exist:

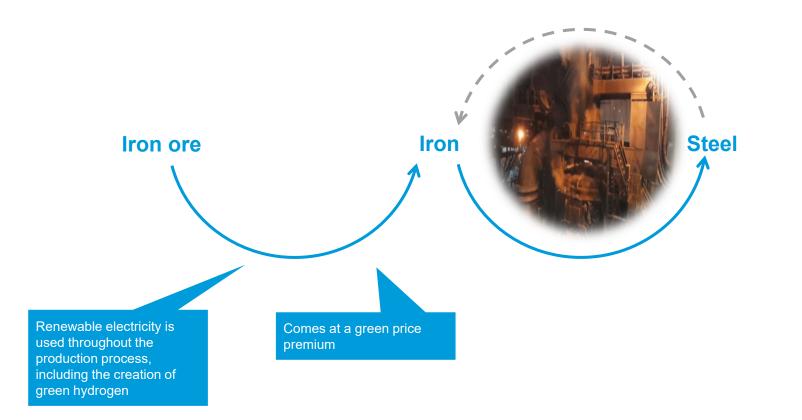
- Green hydrogen DRI-EAF: hydrogen produced using zero-carbon electricity is used as iron ore reductant instead of natural gas. Second step still uses an Electric Arc Furnace (EAF)
- Iron ore electrolysis: use of electricity to split pure iron from iron ore. Two technologies:
 - Molten Oxide Electrolysis (MOE): a high current is run through a mixture of iron ore and a liquid electrolyte. The current causes the iron ore to split into oxygen and molten iron
 - Electrowinning-EAF (EF-EAF): iron from iron ore is dissolved in an acid, which leaves behind impurities. The iron-rich solution is electrocuted to form pure solid iron, which is melted in an EAF
- Carbon Capture, Utilization and Storage (CCUS): BF-BOF and DRI-EAF can be retrofitted with point capture equipment. Captured carbon is then used or stored

These technologies produce steel with over 90% less CO₂ emissions compared to conventional processes. However, green hydrogen DRI-EAF and CCUS BF-BOF / DRI-EAF come at a green price premium. CCUS is also less viable for BF route given difficulty to capture all carbon that's released. Electrolysis may be cheaper than conventional processes, but has not been tested at scale yet


There are also some **emerging transitional steelmaking technologies** with **lower decarbonization potential**:

- Modifications to existing BF-BOF and DRI-EAF: using biomass as input, switching to zero-carbon electricity, partial green hydrogen injections
- Different production process: Smelting Reduction-BOF (SM-BOF)

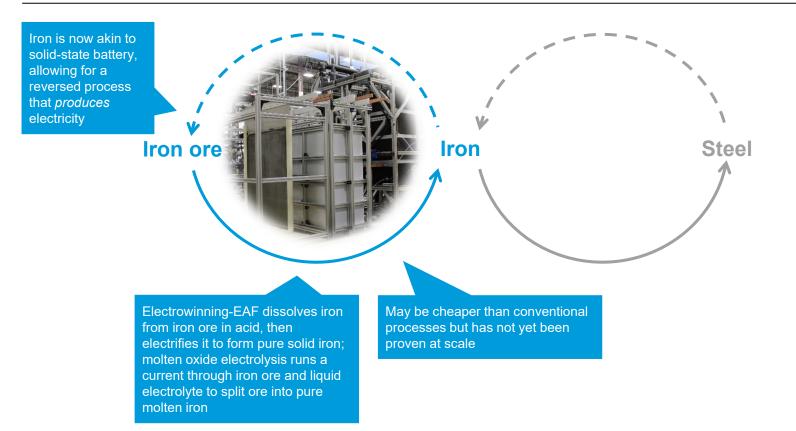
Decarbonization potential of transitional technologies ranges **between 10-50%**, while they still come with a **considerable green premium**


Most steel production uses BF-BOF, scrap EAF, and NG DRI-EAF, with Green H₂ DRI-EAF, iron ore electrolysis, and CCUS technologies emerging

Green H₂ DRI-EAF is an emerging technology using green hydrogen instead of natural gas as an iron ore reductant with standard electric arc furnaces

Green H₂ direct reduced iron-EAF has an average cited decarbonization potential of ~90%

Observations

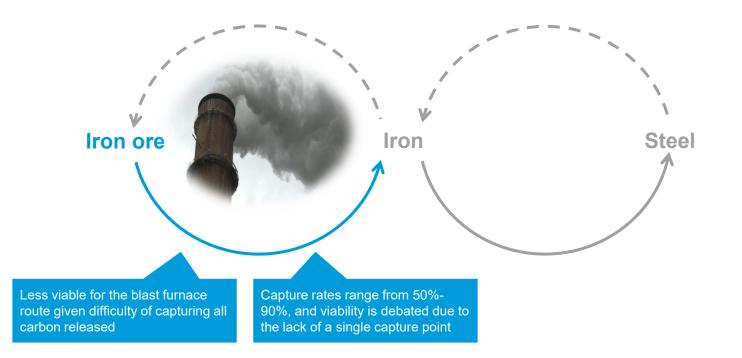

- **BF-BOF:** Iron ore, coke, and limestone produce iron in a blast furnace, which is turned into steel in an oxygen furnace
- Scrap EAF: Scrap metal is melted in an EAF using electrical energy
- NG DRI-EAF: Iron ore turns into iron using natural gas, which is then melted in an EAF to produce steel
- **Green H₂ DRI-EAF:** Green hydrogen replaces natural gas as an iron ore reductant; byproduct is water vs. CO₂

Sources: World Steel Association; IEEFA (2022); IEA, Iron and Steel Technology Roadmap (2020); Steel Technology, Basic Oxygen Furnace Steelmaking; Recycling Today, Growth of EAF Steelmaking; Wildsight, Do We Really Need Coal to Make Steel. Credit: Mimi Khawsam-ang, Max de Boer, Grace Frascati, and Gernot Wagner (22 February 2024); share/adapt with attribution. Contact: gwagner@columbia.edu

Iron ore electrolysis is an emerging technology that uses an electric current to drive a chemical reaction, producing molten iron or pure solid iron

Iron ore electrolysis has an average cited decarbonization potential of ~97%

Observations


- **BF-BOF:** Iron ore, coke, and limestone produce iron in a blast furnace, which is turned into steel in an oxygen furnace
- Scrap EAF: Scrap metal is melted in an electric arc furnace (EAF) using electrical energy
- NG DRI-EAF: Iron ore turns into iron using natural gas, which is then melted in an EAF to produce steel
- **Green H₂ DRI-EAF:** Green hydrogen replaces natural gas as an iron ore reductant; byproduct is water vs. CO₂
- **Iron ore electrolysis:** Molten oxide electrolysis runs a current through iron ore and liquid electrolyte to split ore into pure molten iron; electrowinning-EAF dissolves iron from iron ore in acid, then electrifies it to form solid iron

Sources: World Steel Association; IEEFA (2022); IEA, Iron and Steel Technology Roadmap (2020); Steel Technology, Basic Oxygen Furnace Steelmaking; Recycling Today, Growth of EAF Steelmaking; Wildsight, Do We Really Need Coal to Make Steel. Credit: Mimi Khawsam-ang, Max de Boer, Grace Frascati, and Gernot Wagner (13 March 2024); share/adapt with attribution. Contact: gwagner@columbia.edu

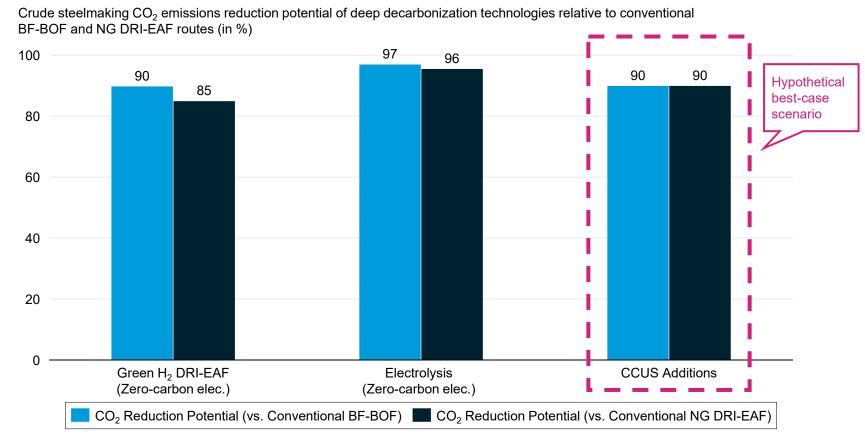
Carbon capture, utilization, and storage (CCUS) is an emerging technology that reduces steel's carbon footprint by capturing released CO₂

Despite a cited ~90% decarbonization potential, CCUS technology is largely unproven

Observations

- **BF-BOF:** Iron ore, coke, and limestone produce iron in a blast furnace, which is turned into steel in an oxygen furnace
- Scrap EAF: Scrap metal is melted in an electric arc furnace using electrical energy
- NG DRI-EAF: Iron ore turns into iron using natural gas, which is then melted in an EAF to produce steel
- **Green H₂ DRI-EAF:** Green hydrogen replaces natural gas as an iron ore reductant; byproduct is water vs. CO₂
- **Iron ore electrolysis:** Molten oxide electrolysis runs a current through iron ore and liquid electrolytes to split ore into pure molten iron; electrowinning-EAF dissolves iron from iron ore in acid, then electrifies it to form solid iron
- CCUS: Equipment is added to existing steelproducing infrastructure to capture emitted CO_{2,} to then sequester or reuse

Green H₂, electrolysis, and CCUS could reduce steelmaking CO₂ emissions by over 85% if implemented at scale

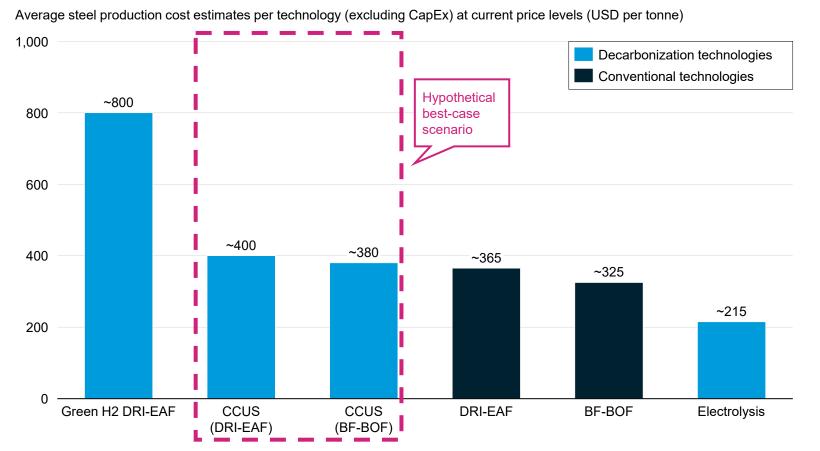

	1	2	3
	100% Green Hydrogen (H2) DRI-EAF	Iron Ore Electrolysis	Carbon Capture, Utilization, and Storage (CCUS)
Description	 Green hydrogen replaces natural gas as an iron ore reductant in DRI shaft; the rest of the process remains the same Generates water as a byproduct instead of CO₂ 	 Two different processes are possible: Molten oxide electrolysis: High current runs through mixture of iron ore and liquid electrolyte to split ore into pure molten iron Electrowinning-EAF: Iron from iron ore is dissolved in acid. Iron-rich solution is then electrified to form pure solid iron 	 CCUS equipment can be added to existing steel-producing infrastructure to capture emitted CO₂ Captured CO₂ is then sequestered underground or reused
Real-time sector initiatives	$\frac{\text{HYBRIT}}{100\%}$ fossil fuel-free DRI-EAF production with green H ₂ used for DRI	Electra Electrowinning to produce high-purity iron plates ready for EAF input (no DRI or MOE step)	<u>ArcelorMittal</u> Carbalyst® captures carbon from a blast furnace and reuses it as bio-ethanol. However, technology not proven at scale
Applicability to conventional routes	Applicable to existing DRI-EAF route, with minor retrofitting	Full overhaul of BF-BOF equipment required; replacement of DRI shaft in DRI-EAF	Retrofitting of capture technology is possible on conventional BF-BOF and DRI-EAF
Decarbonization potential (vs. BF- BOF)	~90%	~97%	~90%
Estimated production cost (excl. CapEx)	<\$800 per tonne of steel	~\$215 per tonne of iron + cost of 'stranded' iron ore	~\$380 – 400 per tonne

Sources: Columbia Center on Global Energy Policy (2021); IEA, Iron and Steel Technology Roadmap (2020); McKinsey (2020); Mining Technology (2023); Tata Steel; Primetals Technologies; Edie, ArcelorMittal accused of net-zero greenwashing (2023). Credit: Mimi Khawsam-ang, Max de Boer, Grace Frascati, and Gernot Wagner (13 March 2024); share/adapt with attribution. Contact: gwagner@columbia.edu

Green H₂, electrolysis, and CCUS could reduce steelmaking CO₂ emissions by over 85% if implemented at scale

All discussed technologies have a CO₂ reduction potential of >85%

Observations


- A key enabler for green steel production is an **abundance of green electricity**, which is required for both **powering electrolysis** and the **production of green hydrogen**
 - Assuming the current global electricity mix does not change, H₂ DRI-EAF would have a decarbonization potential of only 60% instead of >85% when 100% green electricity is used
- The 90% CO₂ reduction for CCUS is a hypothetical best-case scenario, which at present has not been proven at scale

Sources: Columbia Center on Global Energy Policy (2021); American Institute of Chemical Engineers (2023); Electra; Boston Metal; Midrex (2021); International Journal of Greenhouse Gas Control Volume 61 (2017); Mission Possible Partnership Net Zero Steel Sector Transition Strategy (2021). Credit: Mimi Khawsam-ang, Max de Boer, Grace Frascati, and Gernot Wagner (22 February 2024); share/adapt with attribution. Contact: gwagner@columbia.edu

Steel decarbonization technologies, however, often come with a green premium and require large amounts of green energy

Green technologies often come at a green premium

Note: Electrolysis costs are assumed to see a 15% reduction relative to BF-BOF. Carbon capture costs as \$25/tonne-CO₂ with a ~90% capture rate. Green H₂ price at \$6.40/kg. Sources: <u>Columbia Center on Global Energy Policy</u> (2021); <u>Boston Metal</u>; <u>MIT</u> (2018); Journal of Cleaner Production <u>Volume 389</u> (2023); IEA, <u>Is carbon capture too expensive?</u> (2021); <u>McKinsey</u> (2020); <u>Nature Energy</u> (2022); IEA, <u>Iron and Steel Technology Roadmap</u> (2020). Credit: Mimi Khawsam-ang, Max de Boer, Grace Frascati, and <u>Gernot Wagner</u> (13 March 2024); share/adapt with attribution. Contact: <u>gwagner@columbia.edu</u>

Observations

Green H₂ DRI-EAF

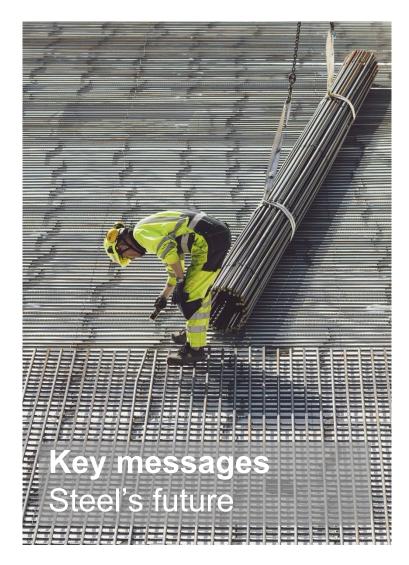
- Green H₂ prices are expected to fall >50%, to \$2.20-\$2.90 per kg by 2030, making H₂ DRI-EAF adoption much more attractive
- Switching from BF-BOF to green H₂ DRI-EAF is costly without government support. CapEx required for a new plant ranges from \$1.1 billion to \$1.7 billion and operating expenses are higher

Electrolysis/Electrowinning

- Claimed cost savings compared to conventional steel production methods are still uncertain due to the nascency of technology
- At present, there is **not enough green electricity available** on grids to support largescale electrolysis-based steelmaking

CCUS

- According to the IEA, CCUS retrofits are at present the most advanced and cost-effective low-carbon solutions for the steel industry
- Adding CCUS technology to existing plants is expected to require only minor modifications



Other transitional decarbonization technologies take less time and effort to implement but have lower decarbonization potential

	MODIFICATIONS TO BF-BOF / DRI-EAF PROCESSES		NEW PRODUCTION PROCESS	
	Biomass as input	Switch to zero-carbon electricity	Partial green hydrogen injections	Smelting Reduction BOF (SR-BOF)
Process description	Biomass used as substitute for coal in BF-BOF Biosyngas used as substitute for natural gas in DRI shaft	Switch from fossil-fueled electricity to 100% green electricity >60% electricity generation is fossil fuel-based today	Injection of hydrogen (~5-10%) to reduce coal use in BF Injection of hydrogen (~30%) to reduce natural gas use in DRI shaft	Production process that eliminates need for coke making and iron ore sintering Emits less CO ₂ than regular BF- BOF
Decarbonization potential (vs. BF-BOF)	~40%	~5 – 40%	~20%	~20%
Estimated production costs / tonne (excl. CAPEX)	~\$455 – 700	~\$345 – 435	~\$375 – 495	~\$310
Limits to decarbonization	Insufficient sustainable biomass is likely available to enable a global transition to this production method	Direct process emissions from BF-BOF and DRI-EAF are not addressed	There is a limit to how much H ₂ can be injected without replacing production equipment	Coal , a primary input, emits CO ₂ , but smelting reduction-BOF provides a concentrated CO ₂ stream, ideal for capture

Reaching **net zero by 2050** would require a ~25% emissions reduction by 2030

Policymakers can and should step in to assist with **green technologies**, such as H2 Green Steel's and Electra's new generation plants

The focus should be on creating **low-cost**, **low-carbon electricity** and on **driving down capital costs** for new technologies

A production tax credit for low-emission iron would support electrolysis as well as green H₂

Time is of the essence, as Asia's large fleet of high-carbon legacy blast furnaces (~75% of global iron production) are due for costly relining in the next 10 years. This presents an **opportunity** to instead invest in **newer, greener technologies**

Appendix

Glossary

BAU	Business as usual	IEA	International Energ
BF-BOF	Blast Furnace-Basic Oxygen Furnace	HRC	Hot Rolled Coil (typ
CAPEX	Capital expenditure(s)	MPP	Mission Possible P
CCUS	Carbon capture, utilization & storage	MOE	Molten oxide electi
со	Carbon monoxide	NG	Natural gas
CO2	Carbon dioxide	NAFTA	North American Fr
CO ₂ e	CO ₂ equivalent, using global warming potential as conversion factor	NG	Natural gas
DAC	Direct Air Capture	NG DRI-EAF	DRI-EAF production
DRI-EAF	Direct Reduced Iron-Electric Arc Furnace production process	NZE	Net Zero Emission
EAF	Electric Arc Furnace	0 ₂	Oxygen
EBITDA	Earnings before interest, taxes, depreciation, and amortization	OECD	The Organization f
EW-EAF	Electrowinning-Electric Arc Furnace	OPEX	Operational expen
Gt	Gigatonne, equal to 1 billion metric tonnes	SR-BOF	Smelting Reduction
H ₂	Hydrogen	Tonne	Metric ton

ΞA	International Energy Agency
IRC	Hot Rolled Coil (type of finished steel product)
IPP	Mission Possible Partnership – industry decarbonization coalition
10E	Molten oxide electrolysis
G	Natural gas
AFTA	North American Free-Trade Agreement
G	Natural gas
G DRI-EAF	DRI-EAF production process using natural gas
ZE	Net Zero Emissions
2	Oxygen
ECD	The Organization for Economic Cooperation and Development
PEX	Operational expenditure(s)
R-BOF	Smelting Reduction-Basic Oxygen Furnace

